Abstract

A set of recommendations is one of the most valuable outputs of the hazard and operability (HAZOP) study. The HAZOP study team provides recommendations when deficiencies are detected in the chemical process plant. These deficiencies can cause chemical process accidents and operability issues. This study employed a data-driven approach using natural language processing (NLP) and machine learning (ML) to predict potential recommendations based on causes and consequences. The dataset had no label; thus, clustering was used to label it. Firstly, bidirectional encoder representations from transformers (BERT) converted recommendation sentences into vectors. Secondly, uniform manifold approximation and projection (UMAP) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) were utilized to determine recommendation categories and label the dataset. Then, BERT was used to convert causes and consequences into vectors. Finally, a multi-layer perceptron (MLP) classifier was employed to predict possible recommendations based on causes and consequences. The class imbalance problem was handled by random over-sampling. The prediction accuracy of possible recommendations based on causes and consequences equals 93.7% and 89.5%, respectively. As a result of predicting potential recommendations utilizing causes and consequences, major recommendations will not be overlooked during the HAZOP study. This can further expand NLP and ML applications in HAZOP study automation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.