Abstract

A fundamental understanding of the mechanism of material interaction with a medium is based on correspondence between experimental studies and actual operating conditions of a given model or a structure. We estimated performance of thermal shield structures based on computations brought about considering physical properties of materials obtained under conditions simulating re-entry of a spacecraft into the atmosphere.A thermal shield is considered of a layered type shell, made of fiber glass with phenol-phormaldehide matrix. Both elastic and thermo-physical characteristics are varied depending on the temperature change.A thermal-stressed state of a cylindrical shield subjected to action of a high-temperature gas flow, is defined based on solving a 3D problem simultaneously using equations of theory of elasticity, thermal conductivity, and numerical analysis. Results are given as dependencies of stress distributions through the thermal coating, taking into account such parameters of atmosphere in re-entry as temperature, heating rate, pressure of a gaseous medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.