Abstract
This study was carried out to investigate the possibility of calibrating a prediction model for the moisture content and density distribution of Scots pine (Pinus sylvestris) using microwave sensors. The material was initially of green moisture content and was thereafter dried in several steps to zero moisture content. At each step, all the pieces were weighed, scanned with a microwave sensor (Satimo 9,4 GHz), and computed tomography (CT)-scanned with a medical CT scanner (Siemens Somatom AR.T.). The output variables from the microwave sensor were used as predictors, and CT images that correlated with known moisture content were used as response variables. Multivariate models to predict average moisture content and density were calibrated using the partial least squares (PLS) regression. The models for average moisture content and density were applied at the pixel level, and the distribution was visualized. The results show that it is possible to predict both moisture content distribution and density distribution with high accuracy using microwave sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.