Abstract

Minimum tillage combined with mulching (MTM) is critical to conservation agriculture, yet its use by smallholder farmers raises challenging questions regarding adoption, diffusion and scaling at farm level. In this paper, we used probit regression and post-estimation simulations to identify the key micro (farm specific) and macro (country specific) factors as predictors of MTM adoption in four countries spanning a north-south gradient in eastern and southern Africa (ESA): Ethiopia, Kenya, Tanzania and Malawi. We found that farmers’ access to markets and social capital empirically predicted MTM adoption. Policies that increased fertilizer subsidies and extension-staff-to-farmer ratios had similar effects, even if only modestly. Conceivably, subsidies specifically targeted at MTM could also be considered based on their potential environmental and social benefits. We conclude that adoption of MTM still faces the same micro- and macro-level hurdles common to all agricultural technologies. Long-term investments in agricultural extension and reductions in the costs of complementary inputs are critical for the diffusion of MTM.

Highlights

  • Motivation Due to dwindling arable land and ongoing unfavourable climatic changes, the need for sustainable intensification of agriculture has gained considerable urgency (The Royal Society 2009)

  • The objective of this paper is to examine the contribution of micro-level household and policy variables in conditioning the simultaneous adoption2 of two important conservation agriculture component technologies: minimum tillage combined with mulching

  • The cited literature and our results suggest that the relationship between minimum tillage combined with mulching (MTM) adoption and plot quality is not uni-directional and that in some cases, farmers may be more likely to adopt MTM as a land-improvement practice on plots that they deem to have good potential for crop production, or that they may refrain from investing in the maintenance of poor plots they perceive to have low returns to such efforts

Read more

Summary

Introduction

Motivation Due to dwindling arable land and ongoing unfavourable climatic changes, the need for sustainable intensification of agriculture has gained considerable urgency (The Royal Society 2009) This has increased interest in climate-smart agriculture (CSA), redirecting agricultural development in ways that recognize the present realities of climate change (Lipper et al 2014). FAO defines CSA as agriculture that sustainably increases productivity, enhances resilience (adaptation), reduces greenhouse gases (GHGs mitigation) where possible and enhances the achievement of national food security and development goals (FAO 2013). This context has generated a growing interest in conservation agriculture whose key agronomic principles are as follows: minimization of soil disturbance; continuous maintenance of soil cover; and crop diversification (by rotations, intercropping or other crop associations) among other practices. The 3rd World Congress on Conservation Agriculture was held in Kenya, and the government (represented by the vice-president of Kenya at that time) expressed its commitment to conservation agriculture in its strategy to revitalize agriculture (ACT 2008 p. 9)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call