Abstract

This study evaluated the contribution of physiological data collected during laboratory testing in predicting race performances of trained junior middle-distance track (TK) and cross-country (XC) athletes. Participants performed a submaximal incremental ramp test, followed by an incremental test to exhaustion in a laboratory, with the results used to predict either 800 m TK, 1500 m TK or 4000–6000 m XC race performance. Twenty-eight participants (male (M), 15; female (F), 13) were analysed (age = 17 ± 2 years, height = 1.72 ± 0.08 m, body mass = 58.9 ± 8.9 kg). Performance times (min:s) for 800 m were: M, 1:56.55 ± 0:05.55 and F, 2:14.21 ± 0:03.89; 1500 m: M, 3:51.98 ± 0:07.35 and F 4:36.71 ± 0:16.58; XC: M (4900 ± 741 m), 16:00 ± 01:53; F (4628 ± 670 m), 17:41 ± 02:09. Stepwise regression analysis indicated significant contributions of speed at ⩒O2max (s⩒O2max), and heart rate maximum (HRmax) to the prediction of 800 m TK (F(2,15) = 22.51, p < 0.001, adjusted R 2 = 0.72), s⩒O2max for 1500 m TK (F(1,13) = 36.65, p < 0.001, adjusted R 2 = 0.72) and ⩒O2max, allometrically scaled to body mass and speed at lactate threshold (sLT) for XC (F(2,17) = 25.1, p < 0.001, adjusted R 2 = 0.72). Laboratory-based physiological measures can explain 72% of the variance in junior TK and XC events, although factors that explain performance alter depending on the race distance and tactics. The factors determining performance in TK and XC events are not interchangeable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.