Abstract
Data-driven methods, such as artificial neural networks (ANNs), support vector regression (SVM), Gaussian process regression (GPR), multiple linear regression (MLR), decision trees (DTs), and gradient boosting decision trees (GBDTs), are the most popular and advanced methods for energy demand prediction. However, these methods have not been cross compared to analyze their performances for long-term energy demand predictions. Therefore, this paper aims to identify the best method among these data-driven methods for quantifying the impacts of climatic and socioeconomic changes on future long-term monthly electricity demand in Hong Kong. First, historical 40-year climatic, socioeconomic, and electricity consumption data are used to train and validate these models. Second, different representation concentration pathway (RCP) scenarios and three percentiles of 24 global circulation model outputs are adopted as future climatic changes, while five shared socioeconomic pathways are considered for future socioeconomic uncertainties. The results show that the GBDT method provides the best accuracy, generalization ability, and time-series stability, while ANN method exhibits the lowest accuracy and lower generalization ability. The monthly electricity demands in Hong Kong under the RCP8.5–2090 s scenario are predicted to increase by up to 89.40 % and 54.34 % in the residential and commercial sectors, respectively, when compared with 2018 levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.