Abstract

Cable yarding systems constitute an adapted solution for steep-slope harvesting in mountain forests. However, it requires many specific skills for both forest managers and operators. The objectives of this research were to: (1) develop a CableHelp model for the set-up of cable yarding systems where inputs are operational field data and outputs are load path and tensile forces, and (2) to validate it with field experiments. The results show a high accuracy between the data predicted by the model and field measurements. Furthermore, this work stresses the importance of taking into account both the mainline effect and the friction between skyline and intermediate supports to properly calculate the skyline tension and load path. The CableHelp model shows great adaptability and ensures highly accurate predictions for any position on the line profile and for different configurations: single-span or multiple-span profiles, uphill or downhill yarding and for different kinds of carriage. A direct application of this research is to optimize the set-up of cable lines in order to reduce equipment wear, as well as operating cost, while respecting operator safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call