Abstract
Liposome is one of the most widely used carriers for drug delivery because of the great biocompatibility and biodegradability. Due to the complex formulation components and preparation process, formulation screening mostly relies on trial-and-error process with low efficiency. Here liposome formulation prediction models have been built by machine learning (ML) approaches. The important parameters of liposomes, including size, polydispersity index (PDI), zeta potential and encapsulation, are predicted individually by optimal ML algorithm, while the formulation features are also ranked to provide important guidance for formulation design. The analysis of key parameter reveals that drug molecules with logS [-3, -6], molecular complexity [500, 1000] and XLogP3 (≥2) are priority for preparing liposome with higher encapsulation. In addition, naproxen (NAP) and palmatine HCl (PAL) represented the insoluble and water-soluble molecules are prepared as liposome formulations to validate prediction ability. The consistency between predicted and experimental value verifies the satisfied accuracy of ML models. As the drug properties are critical for liposome particles, the molecular interactions and dynamics of NAP and PAL liposome are further investigated by coarse-grained molecular dynamics simulations. The modeling structure reveals that NAP molecules could distribute into lipid layer, while most PAL molecules aggregate in the inner aqueous phase of liposome. The completely different physical state of NAP and PAL confirms the importance of drug properties for liposome formulations. In summary, the general prediction models are built to predict liposome formulations, and the impacts of key factors are analyzed by combing ML with molecular modeling. The availability and rationality of these intelligent prediction systems have been proved in this study, which could be applied for liposome formulation development in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.