Abstract
Porphyrin macrocycles play an important role in designing of fluorophores with superior light harvesting properties similar to that of antennas in biological systems. In this paper, new Zn(II)porphyrin dyes were investigated to improve the performance of the YD2-o-C8 using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Effects of various substituted and anchoring groups on basic porphine and Zn(II)porphyrin derivatives were systematically studied at the B3LYP/LanL2DZ level. The absorption spectra of Zn(II)porphyrin derivatives bearing one, two and four anchoring groups in the meso-positions were also studied. The calculations showed that a molecule [5, 10, 15, 20-(4-carboxyphenylethynyl)porphyrinato]Zn(II) have large absorption cross-section than available in the existing porphyrin dyes. The results of these calculations would open up enormous possibilities to develop porphyrin dyes characterized by high absorption cross-section for various light harvesting applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.