Abstract
To represent the meaning of a word, most models use external language resources, such as text corpora, to derive the distributional properties of word usage. In this study, we propose that internal language models, that are more closely aligned to the mental representations of words, can be used to derive new theoretical questions regarding the structure of the mental lexicon. A comparison with internal models also puts into perspective a number of assumptions underlying recently proposed distributional text-based models could provide important insights into cognitive science, including linguistics and artificial intelligence. We focus on word-embedding models which have been proposed to learn aspects of word meaning in a manner similar to humans and contrast them with internal language models derived from a new extensive data set of word associations. An evaluation using relatedness judgments shows that internal language models consistently outperform current state-of-the art text-based external language models. This suggests alternative approaches to represent word meaning using properties that aren't encoded in text.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.