Abstract
The pricing of housing properties is determined by a variety of factors. However, post-pandemic markets have experienced volatility in the Chicago suburb area, which have affected house prices greatly. In this study, analysis was done on the Naperville/Bolingbrook real estate market to predict property prices based on these housing attributes through machine learning models, and to evaluate the effectiveness of such models in a volatile market space. Gathering data from Redfin, a real estate website, sales data from 2018 up until the summer season of 2022 were collected for research. By analyzing these sales in this range of time, we can also look at the state of the housing market and identify trends in price. For modeling the data, the models used were linear regression, support vector regression, decision tree regression, random forest regression, and XGBoost regression. To analyze results, comparison was made on the MAE, RMSE, and R-squared values for each model. It was found that the XGBoost model performs the best in predicting house prices despite the additional volatility sponsored by post-pandemic conditions. After modeling, Shapley Values (SHAP) were used to evaluate the weights of the variables in constructing models. The code and data files can be found at https://github.com/ GeometricBison/HousePriceML.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have