Abstract
Carbon capture and storage (CCS), which involves injecting carbon dioxide (CO2) into subsurface, is an increasingly popular process for mitigating human caused greenhouse gas emissions. In order to ensure the safety and efficacy of CCS implementation, it is necessary to possess a comprehensive understanding of the complex behaviour of CO2 plumes within geological formations and their potential impact on ground surface deformation. Therefore, conducting research and analysis on these critical aspects is of vital importance. This research provides a methodology to anticipate ground surface deformations, which result from the motion of CO2 plumes utilising an advanced machine learning (ML) technique. The ML surrogate model has been developed using conditional Generative Adversarial Networks (cGAN). The dataset used for the model training and testing comprises ground surface measurements (tiltmeters), reservoir properties, as well as pressure/volume data. The model has been trained and tested using a set of samples created using a forward finite element model. Results show that the surrogate model is capable of predicting reasonably accurate results while running much faster than the forward model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have