Abstract

This research aims to improve the accuracy of predicting student permit results in the digital era by utilizing machine learning techniques. The main focus is the use of a Decision Tree (DT) model optimized with a Genetic Algorithm (GA) to overcome the limitations of accuracy and testing of conventional methods. This research began with collecting student academic data, followed by preprocessing to eliminate incompleteness and organize the data format. The DT model is then built and optimized with GA, which is inspired by biological evolutionary processes to improve feature selection and parameter tuning. The results show a significant increase in prediction accuracy, from 86.19% to 87.68%, and an increase in the Area Under Curve (AUC) value from 0.755% to 0.788%. This research not only proves the effectiveness of GA integration in improving DT models, but also paves the way for the application of evolutionary techniques in educational data analysis and other fields. The main contributions of this research include the development of more accurate prediction models and practical applications in educational contexts, with the hope of assisting educational institutions in making more informed decisions for their students.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.