Abstract

BackgroundIt has been widely reported that gestational exposure to fine particulate matters (PM2.5) is associated with a series of adverse birth outcomes. However, the discrepancy between ambient PM2.5 concentrations and personal PM2.5 exposure would significantly affect the estimation of exposure-response relationship. ObjectiveOur study aimed to predict gestational personal exposure to PM2.5 from the satellite-driven ambient concentrations and analyze the influence of other potential determinants. MethodWe collected 762 72-h personal exposure samples from a panel of 329 pregnant women in Shanghai, China as well as their time-activity patterns from Feb 2017 to Jun 2018. We established an ambient PM2.5 model based on MAIAC AOD at 1 km resolution, then used its output as a major predictor to develop a personal exposure model. ResultsOur ambient PM2.5 model yielded a cross-validation R2 of 0.96. Personal PM2.5 exposure levels were almost identical to the corresponding ambient concentrations. After adjusting for time-activity patterns and meteorological factors, our personal exposure has a CV R2 of 0.76. ConclusionWe established a prediction model for gestational personal exposure to PM2.5 from satellite-based ambient concentrations and provided a methodological reference for further epidemiological studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.