Abstract

Two previous papers in this series evaluated model fit of eight thermal-germination models parameterized from constant-temperature germination data. The previous studies determined that model formulations with the fewest shape assumptions provided the best estimates of both germination rate and germination time. The purpose of this latest study was to evaluate the accuracy and efficiency of these same models in predicting germination time and relative seedlot performance under field-variable temperature scenarios. The seeds of four rangeland grass species were germinated under 104 variable-temperature treatments simulating six planting dates at three field sites in south-western Idaho. Measured and estimated germination times for all subpopulations were compared for all models, species and temperature treatments. All models showed similar, and relatively high, predictive accuracy for field-temperature simulations except for the iterative-probit-optimization (IPO) model, which exhibited systematic errors as a function of subpopulation. Highest efficiency was obtained with the statistical-gridding (SG) model, which could be directly parameterized by measured subpopulation rate data. Relative seedlot response predicted by thermal time coefficients was somewhat different from that estimated from mean field-variable temperature response as a function of subpopulation. All germination response models tested performed relatively well in estimating field-variable temperature response. IPO caused systematic errors in predictions of germination time, and may have degraded the physiological relevance of resultant cardinal-temperature parameters. Comparative indices based on expected field performance may be more ecologically relevant than indices derived from a broader range of potential thermal conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.