Abstract

Model simulations for bioenergy harvest planning need to utilize equipment-capacity relationships for equipment operating under the high-yield conditions typical of a biomass crop. These performance assumptions have a direct bearing on the estimates of machine capacity, the number of machines required, and, therefore, the cost to fulfill the biorefinery plant demands for a given harvest window. Typically, two major issues in these models have been poorly understood: the available time required to complete the harvest operation (often called probability of workdays) and the capacity of the harvest equipment as impacted by yield. Simulations use annual yield estimates, which incorporate weather events, to demonstrate year-to-year effects. Some simulations also incorporate potential yield increases from genetically modified energy crops. There are limited field performance data for most current forage equipment used for harvesting high-yield biomass crops. Analysis shows that the impact of wrap/eject time for round balers resulted in a 50% reduction in achieved throughput capacity (Mg/h). After the maximum throughput is reached, the cost of the round bale operation (3.23 USD/Mg) is double that of the large-square baler (1.63 USD/Mg). The round baler achieved throughput capacity is 50% less (32.7 Mg/h compared to 71.0 Mg/h) than the large-square baler.

Highlights

  • Herbaceous biomass can contribute to the emerging bio-economy as a feedstock for electricity generation, process steam, liquid fuel, commodity chemicals, and other bioproducts

  • The purpose of this study is to develop a mathematical relationship between yield and round-baling field efficiency to predict how the capacity of biomass balers is impacted by high-yielding bioenergy crops

  • A key relationship of round baler field performance was developed to show the impact of maximum throughput (Cmx) on baler field efficiency and field capacity

Read more

Summary

Introduction

Herbaceous biomass can contribute to the emerging bio-economy as a feedstock for electricity generation, process steam, liquid fuel, commodity chemicals, and other bioproducts. The Southeast USA has unique biomass potential [1] because of: high annual rainfall, considerable land that can be diverted to biomass production without significant competition with food and feed production, and an established woody biomass industry. Grasses, such as switchgrass, are one of the most significant potential sources of biomass. An advantage of switchgrass is that it can be harvested much like hay, which is a well-known operation amongst farmers in the region, and, unlike woody biomass, it provides an annual harvest, and, provides an annual income to the producer. Round balers are less expensive to purchase and operate as they require smaller tractors than large-square balers, an advantage for the smaller farms [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call