Abstract
To alleviate social problems in agriculture such as aging and labor force shortages, automatic growth monitoring based on image measurement has been introduced to tomato cultivation in greenhouses. The overlap of leaves and fruits makes precise observations challenging. In this study, we applied context recognition to tomato growth monitoring by using a Bayesian network. The proposed method combines image recognition using convolutional networks and context recognition using Bayesian networks. It enables not only the recognition of individual tomatoes but also the evaluation of tomato plants. An accurate number of tomatoes and the condition of the stocks can be estimated based on the number of ripe and unripened tomatoes in addition to their density information. The verification experiments clarified that a more accurate number of tomatoes could be estimated than with simple tomato detection, and the stock states could also be evaluated correctly. Compared to conventional methods, the method used in this study has improved tomato decision accuracy by 23%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.