Abstract

This research presents an exploratory data analytics case study in defect prediction on printed circuit boards (PCB) employing ball grid array (BGA) package types during assembly. BGA package types are of interest because defects are difficult to identify and costly to rework. While much of the existing research is dedicated to techniques to identify and diagnose BGA defects, this research attempts to preempt them by using parametric data measured by solder paste inspection (SPI) machines as input data to applied machine learning models. Two modeling approaches are explored: one approach to analyze individual solder paste deposits and the other approach to holistically analyze all solder paste deposits on a single PCB location. The latter approach employs feature generation to extract a broad set of features from the arrays of SPI data and feature selection techniques for dimensionality reduction. Models trained on the reduced feature sets provide encouraging initial results, with precision, recall, and f1 score metrics exceeding 0.82, 0.50, and 0.62 respectively for each of two datasets analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.