Abstract
This study aims at revealing how commercial hotness of urban commercial districts (UCDs) is shaped by social contexts of surrounding areas so as to render predictive business planning. We define social contexts for a given region as the number of visitors, the region functions, the population and buying power of local residents, the average price of services, and the rating scores of customers, which are computed from heterogeneous data including taxi GPS trajectories, point of interests, geographical data, and user-generated comments. Then, we apply sparse representation to discover the impactor factor of each variable of the social contexts in terms of predicting commercial activeness of UCDs under a linear predictive model. The experiments show that a linear correlation between social contexts and commercial activeness exists for Beijing and Shanghai based on an average prediction accuracy of 77.69% but the impact factors of social contexts vary from city to city, where the key factors are rich life services, diversity of restaurants, good shopping experience, large number of local residents with relatively high purchasing power, and convenient transportation. This study reveals the underlying mechanism of urban business ecosystems, and promise social context-aware business planning over heterogeneous urban big data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.