Abstract
Hydrological changes combined with earthquakes easily trigger secondary disasters, including geological hazards. The secondary hazard of precipitation is the main disaster type in the Longmenshan Area (China). The 2008 Wenchuan earthquake caused more than 60,000 landslides, severely affecting rural households. This study aimed to answer two questions: (1) How did households adapt to the landslide-prone post-earthquake environment? (2) How will the households’ adaptation strategies change if landslide frequency changes? Different post-disaster adaptation strategies of households in Longmenshan Town, Sichuan, China were identified through a questionnaire survey and then clustered into groups based on similarity using a K-means algorithm. Afterward, a gradient boosting decision tree (GBDT) was used to predict change in adaptation strategies if there was a change in the frequency of landslides. The results show that there are three types of landslide adaptation strategies in the study area: (1) autonomous adaptation; (2) policy-dependent adaptation; and (3) hybrid adaptation, which is a mixture of the first two types. If the frequency of landslides is increased, then around 5% of households previously under the autonomous adaptation type would be converted to policy-dependent and hybrid adaptation types. If the frequency of landslides is reduced, then around 5% of households with policy-dependent adaptation strategies would be converted to the autonomous adaptation type. This exploratory study provides a glimpse of how machine learning can be utilized to predict how adaptation strategies would be modified if hazard frequency changed. A follow-up long-term study in Longmenshan Town is needed to confirm whether the predictions are indeed correct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.