Abstract

BackgroundThere are more than 50 genes for autosomal dominant and autosomal recessive nonsyndromic hereditary deafness that are yet to be cloned. The human genome sequence and expression profiles of transcripts in the inner ear have aided positional cloning approaches. The knowledge of protein interactions offers additional advantages in selecting candidate genes within a mapped region.ResultsWe have employed a bioinformatic approach to assemble the genes encoded by genomic regions that harbor various deafness loci. The genes were then in silico analyzed for their candidacy by expression pattern and ability to interact with other proteins. Such analyses have narrowed a list of 2400 genes from suspected regions of the genome to a manageable number of about 140 for further analysis.ConclusionWe have established a list of strong candidate genes encoded by the regions linked to various nonsyndromic hereditary hearing loss phenotypes by using a novel bioinformatic approach. The candidates presented here provide a starting point for mutational analysis in well-characterized families along with genetic linkage to refine the loci. The advantages and shortcomings of this bioinformatic approach are discussed.

Highlights

  • There are more than 50 genes for autosomal dominant and autosomal recessive nonsyndromic hereditary deafness that are yet to be cloned

  • The locations of 23 autosomal dominant and 27 autosomal recessive nonsyndromic deafness phenotypes mapped to several chromosomes downloaded from hereditary hearing loss homepage are shown in Tables 1 and 2[4]

  • If a gene encoded in the candidate region interacts with a gene that is either involved in inner ear development/function, or a protein shows interaction with more than one candidate genes mapping to different loci, such a gene is likely to be involved in the phenotype in question

Read more

Summary

Introduction

There are more than 50 genes for autosomal dominant and autosomal recessive nonsyndromic hereditary deafness that are yet to be cloned. Hearing loss, acquired or genetic, is a major worldwide public health concern. Numerous genes have been linked to hearing disorders [1]. These disorders may be syndromic or nonsyndromic; conductive, sensorineural, or mixed; and prelingual or postlingual [2]. The various genetic forms of hearing loss are distinguished based on otologic, audiologic and physical examination combined with linkage analysis. The mutational analysis of genes such as GJB2 (encoding the protein connexin 26) and GJB6 (encoding the protein connexin 30) [3,5,6] has aided diagnosis and geneticcounselling

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.