Abstract

The aqueous solubility is predicted here using quantitative structure property relationship (QSPR) models. In this study, we examine whether descriptors that individually yield favorable models for the prediction of the Gibbs energy of solvation and sublimation can be used in combination with octanol-water partition coefficient to produce QSPR models for the prediction of aqueous solubility. Based on this strategy, applied to seven distinct datasets, all models exhibited an R2 greater than 0.7 and Q2 greater than 0.6 for the estimation of aqueous solubility. We also determined how uncoupling the descriptors used to create QSPR models in the prediction of Gibbs energy of sublimation yielded an improved model. Model refinement using an artificial neural network applying the same descriptors generated significantly better models with improved R2 and standard deviation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.