Abstract

Diabetes mellitus (DM) presents a critical global health challenge, characterized by persistent hyperglycemia and associated with substantial economic and health-related burdens. This study employs advanced machine-learning techniques to improve the prediction and classification of antidiabetic peptides, with a particular focus on differentiating those effective against T1DM from those targeting T2DM. We integrate feature selection with analysis methods, including logistic regression, support vector machines (SVM), and adaptive boosting (AdaBoost), to classify antidiabetic peptides based on key features. Feature selection through the Lasso-penalized method identifies critical peptide characteristics that significantly influence antidiabetic activity, thereby establishing a robust foundation for future peptide design. A comprehensive evaluation of logistic regression, SVM, and AdaBoost shows that AdaBoost consistently outperforms the other methods, making it the most effective approach for classifying antidiabetic peptides. This research underscores the potential of machine learning in the systematic evaluation of bioactive peptides, contributing to the advancement of peptide-based therapies for diabetes management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.