Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus, recognized by the World Health Organization (WHO), has led to 164,523,894 confirmed cases and 3,412,032 deaths globally as of May 20, 2021. SARS-CoV-2 encodes crucial proteases for its replication cycle, including the papain-like protease (PLpro), presenting a potential target for developing COVID-19 treatments. Mauritine, a cyclopeptide alkaloid found in the Ziziphus-spina christi plant, exhibits antiviral properties and was investigated for its affinity and toxicity towards PLpro using molecular docking through MGLTools 1.5.6 with Autodock Tools 4.2. Preceding this, toxicity and ADME prediction were performed via Toxtree 3.1.0 software and SwissADME servers. Results from molecular docking revealed free binding energy values of −8.58; −7.73; −8.36; −6.07; −6.67; −7.83; −7.67; −7.40; and −6.87 Kcal/mol for Mauritine-A, Mauritine-B, Mauritine-C, Mauritine-D, Mauritine-F, Mauritine-H, Mauritine-J, Mauritine-L, and Mauritine-M, respectively. Correspondingly, inhibition constants were 0.51724; 2.14; 0.7398; 35.43; 12.95; 1.83; 2.38; 3.80; and 9.17 µM, respectively. Interactions observed included hydrogen bonds, hydrophobic interactions, and electrostatic interactions between the Mauritine compounds and the receptor. Mauritine-A and Mauritine-C emerged as a promising anti-COVID-19 candidate due to its superior affinity compared to other derivatives, as indicated by research findings. Interestingly, Mauritine-A and Mauritine-C exhibits notable stability as depicted by the RMSD and RMSF graphs, along with a considerable MM-PBSA binding free energy value of −162.431 and −137.500 kJ/mol, respectively. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.