Abstract
Species in the genus Macaca typically live in multimale-multifemale social groups with male macaques exhibiting some of the largest testis: body weight ratios among primates. Males are believed to experience intense levels of sperm competition. Several spermatogenesis genes are located on the Y-chromosome and, interestingly, occasional hybridization between two species has led to the introgression of the rhesus macaque (Macaca mulatta) Y-chromosome deep into the range of the long-tailed macaque (M. fascicularis). These observations have led to the prediction that the successful introgression of the rhesus Y-haplotype is due to functional differences in spermatogenesis genes compared to those of the native long-tailed Y-haplotype. We examine here four Y-chromosomal loci-RBMY, XKRY, and two nearly identical copies of CDY-and their corresponding protein sequences. The genes were surveyed in representative animals from north of, south of, and within the rhesus x long-tailed introgression zone. Our results show a series of non-synonymous amino acid substitutions present between the two Y-haplotypes. Protein structure modeling via I-TASSER revealed different folding patterns between the two species' Y-proteins, and functional predictions via TreeSAAP further reveal physicochemical differences as a result of non-synonymous substitutions. These differences inform our understanding of the evolution of primate Y-proteins involved in spermatogenesis and, in turn, have biomedical implications for human male fertility.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have