Abstract

No crystal structure at ambient pressure is known for tetramethylsilane, Si(CH(3))(4), which is used as a standard in NMR spectroscopy. Possible crystal structures were predicted by global lattice-energy minimizations using force-field methods. The lowest-energy structure corresponds to the high-pressure room-temperature phase (Pa3, Z = 8). Low-temperature crystallization at 100 K resulted in a single crystal, and its crystal structure has been determined. The structure corresponds to the predicted structure with the second lowest energy rank. In X-ray powder analyses this is the only observed phase between 80 and 159 K. For tetramethylgermane, Ge(CH(3))(4), no experimental crystal structure is known. Global lattice-energy minimizations resulted in 47 possible crystal structures within an energy range of 5 kJ mol(-1). The lowest-energy structure was found in Pa3, Z = 8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.