Abstract

A one-dimensional plume and cloud growth model is applied to four months of radiosonde observations from Nashville, using as initial conditions the plume from single large cooling towers with waste heat outputs of 103, 104 and 105 MW, and a complex of cooling towers with a total waste heat output of 105 MW. Estimates of average annual plume rise from the four energy sources are 580,1180,2460 and 780 m, respectively. The predicted plume rise, visible plume length and cloud formation are given as functions of time of day, year and weather type. For example, a cloud forms at the top of the plume from the 103 MW tower in 65% of the morning soundings during which ground level fog was observed. A cloud is predicted to occur 95% of the time at the top of the plume from the single 105 MW tower. It is found that if the towers in an energy center are separated by a distance greater than the average plume rise from one tower, then plume merging is minimized. Observations from TVA's Paradise steam plant are used to test the predictions of visible plume length from a single 103 MW tower.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call