Abstract
The empirical literature of stock market predictability mainly suffers from model uncertainty and parameter instability. To meet this challenge, we propose a novel approach that combines dimensionality reduction, regime-switching models, and forecast combination to predict excess returns on the S&P 500. First, we aggregate the weekly information of 146 popular macroeconomic and financial variables using different principal component analysis techniques. Second, we estimate Markov-switching models with time-varying transition probabilities using the principal components as predictors. Third, we pool the models in forecast clusters to hedge against model risk and to evaluate the usefulness of different specifications. Our weekly forecasts respond to regime changes in a timely manner to participate in recoveries or to prevent losses. This is also reflected in an improvement of risk-adjusted performance measures as compared to several benchmarks. However, when considering stock market returns, our forecasts do not outperform common benchmarks. Nevertheless, they do add statistical and, in particular, economic value during recessions or in declining markets.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have