Abstract

The North Alpine Foreland Basin in SE Germany is Germany’s most active deep geothermal province. However, in its southern and eastern part the basin is considerably overpressured, which is a significant challenge for drilling deep geothermal wells. In this study, we combine drilling data and velocity-based pore pressure analyses with 3D basin modeling to assess the predictability and controlling factors of overpressure in the sub-regional context (area of 80 km × 50 km) around the Geretsried GEN-1 well, a deep geothermal exploration well in the southern part of the North Alpine Foreland Basin in SE Germany. Drilling data and velocity-based pore pressure analyses indicate overpressure maxima in the Lower Oligocene (Rupelian and Schoeneck Formation) and up to mild overpressure in the Upper Oligocene (Chattian) and Upper Cretaceous, except for the hydrostatically pressured northwestern part of the study area. 3D basin modeling calibrated to four hydrocarbon wells surrounding the Geretsried GEN-1 well demonstrates the dominating role of disequilibrium compaction and low permeability units related to overpressure generation in the North Alpine Foreland Basin. However, secondary overpressure generation mechanisms are likely contributing. Also, the impact of Upper Cretaceous shales, which are eroded in the northwestern part of the study area, on overpressure maintenance is investigated. The calibrated basin model is tested against the drilling history and velocity (VSP) data-based pore pressure estimate of the Geretsried GEN-1 well and reveals that pore pressure prediction is generally possible using 3D basin modeling in the North Alpine Foreland Basin, but should be improved with more detailed analysis of lateral drainage systems and facies variations in the future. The results of the study are of relevance to future well planning and drilling as well as to geomechanical modeling of subsurface stresses and deep geothermal production in the North Alpine Foreland Basin.

Highlights

  • Within any deep geothermal project, drilling is associated with the highest risk, both economically and safety-wise (e.g., Stober and Bucher 2013)

  • Drilling data and velocity-based pore pressure analyses indicate overpressure maxima in the Lower Oligocene (Rupelian and Schoeneck Formation) and up to mild overpressure in the Upper Oligocene (Chattian) and Upper Cretaceous, except for the hydrostatically pressured northwestern part of the study area. 3D basin modeling calibrated to four hydrocarbon wells surrounding the Geretsried GEN-1 well demonstrates the dominating role of disequilibrium compaction and low permeability units related to overpressure generation in the North Alpine Foreland Basin

  • Drilling data and velocity-based pore pressure analyses have been combined with 3D basin modeling to test the predictability and controlling factors of overpressure in the area of the Geretsried GEN-1 deep geothermal well, located in the North Alpine Foreland Basin in SE Germany

Read more

Summary

Introduction

Within any deep geothermal project, drilling is associated with the highest risk, both economically and safety-wise (e.g., Stober and Bucher 2013). Quite often the effective implementation and continuation of a deep geothermal project depend on the success of the first well drilled. Careful well planning and adequate prediction of subsurface stresses and pressures are crucial for a successful completion of deep geothermal projects and deep drilling in general. This is valid in overpressured basins (Mouchet and Mitchell 1989)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call