Abstract

Efficient planning in continuous state and action spaces is fundamentally hard, even when the transition model is deterministic and known. One way to alleviate this challenge is to perform bilevel planning with abstractions, where a high-level search for abstract plans is used to guide planning in the original transition space. Previous work has shown that when state abstractions in the form of symbolic predicates are hand-designed, operators and samplers for bilevel planning can be learned from demonstrations. In this work, we propose an algorithm for learning predicates from demonstrations, eliminating the need for manually specified state abstractions. Our key idea is to learn predicates by optimizing a surrogate objective that is tractable but faithful to our real efficient-planning objective. We use this surrogate objective in a hill-climbing search over predicate sets drawn from a grammar. Experimentally, we show across four robotic planning environments that our learned abstractions are able to quickly solve held-out tasks, outperforming six baselines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.