Abstract
Among the many variants of RL, an important class of problems is where the state and action spaces are continuous—autonomous robots, autonomous vehicles, optimal control are all examples of such problems that can lend themselves naturally to reinforcement based algorithms, and have continuous state and action spaces. In this paper, we introduce a prioritized form of a combination of state-of-the-art approaches such as Deep Q-learning (DQN) and Deep Deterministic Policy Gradient (DDPG) to outperform the earlier results for continuous state and action space problems. Our experiments also involve the use of parameter noise during training resulting in more robust deep RL models outperforming the earlier results significantly. We believe these results are a valuable addition for continuous state and action space problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.