Abstract
The functional response of a planktonic ciliate, Strombidium sp. feeding on the dinoflagellate Pfiesteria piscicida non-toxic zoospores (NTZ) was experimentally studied with four different prey concentrations (43–3153 cells ml −1). Data from direct observations (NTZ inside individual Strombidium sp.) was used to calculate predator–prey specific ingestion and clearance rates. The ingestion rates varied between 0.68 and 14.26 NTZ ind −1 h −1, and with the predator–prey specific handling time of 2.83 min the U max was 21.18 NTZ ind −1 h −1. The increase in the prey concentration between approximately 700 and 3000 NTZ ml −1 did not increase the uptake of prey, and at the lowest Pfiesteria NTZ concentrations the feeding efficiency of Strombidium sp. was lowered, possibly indicating a situation of threshold feeding. When data from direct observations of ingested Pfiesteria NTZ were compared with values of total NTZ loss from the experimental water during the experiment, ingestion was found to represent only a fraction of the total NTZ loss in the presence of ciliates. This discrepancy was concluded to be due to other grazer related factors than actual ciliate grazing. The control of the initial growth of Pfiesteria community, in a pre-bloom situation, would require only a small ciliate abundance (less than 5 ml −1), but when the Pfiesteria NTZ are scarce, relatively more ciliates are needed to limit the population growth of the dinoflagellate community because of the apparent feeding threshold. It is concluded that the formation of non-toxic P. piscicida blooms require periods of low grazing pressure or a means to escape grazing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have