Abstract

SummaryIn this paper, we consider the solution of a large linear system of equations, which is obtained from discretizing the Euler–Lagrange equations associated with the image deblurring problem. The coefficient matrix of this system is of the generalized saddle point form with high condition number. One of the blocks of this matrix has the block Toeplitz with Toeplitz block structure. This system can be efficiently solved using the minimal residual iteration method with preconditioners based on the fast Fourier transform. Eigenvalue bounds for the preconditioner matrix are obtained. Numerical results are presented. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.