Abstract
Abstract Time-harmonic problems arise in many important applications, such as eddy current optimally controlled electromagnetic problems. Eddy current modelling can also be used in non-destructive testings of conducting materials. Using a truncated Fourier series to approximate the solution, for linear problems the equation for different frequencies separate, so it suffices to study solution methods for the problem for a single frequency. The arising discretized system takes a two-by-two or four-by-four block matrix form. Since the problems are in general three-dimensional in space and hence of very large scale, one must use an iterative solution method. It is then crucial to construct efficient preconditioners. It is shown that an earlier used preconditioner for optimal control problems is applicable here also and leads to very tight eigenvalue bounds and hence very fast convergence such as for a Krylov subspace iterative solution method. A comparison is done with an earlier used block diagonal preconditioner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.