Abstract
In this study, preconcentration conditions of trace amounts of copper ions were investigated with solid-phase extraction (SPE) method by synthesizing activated carbon-based ion-imprinted sorbent (Cu(II)-IAC) with a novel and selective approach. Flame atomic absorption spectrometry (FAAS) was used for the determination of metal ions concentrations. For the characterization of the sorbents, scanning electron microscopy, energy dispersive X-ray (SEM/EDX) analysis, and Fourier transform infrared spectroscopy (FTIR) were used. Optimum conditions for the SPE procedure, various parameters such as pH value, eluent type and concentration, sample volume, sample flow rate, adsorption capacity, and selectivity were studied. The adsorption isotherm was analyzed by Freundlich and Langmuir isotherm, and the maximum adsorption capacity was found to be 142.9 and 312.5 mg/g for activated carbon-based nonimprinted (Cu(II)-non-IAC) and Cu(II)-IAC sorbents, respectively from the Langmuir isotherm. Limit of determination (LOD) and limit of quantification (LOQ) values were found to be 0.038 and 0.113 μg/L, respectively for Cu(II)-IAC sorbent, and the results were compared with the literature. The accuracy and validity of the proposed method were evaluated by the determination of Cu(II) ions from tap water samples and certified reference materials (CRMs) (soft drinking water ERML-CA021e and NIST 1643e) analysis. Good and quantitative recoveries were obtained for the spiked analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.