Abstract

Utilization of Amberlite XAD-2 surface modified by covalent immobilization of brilliant green through an azo spacer for adsorptive enrichment of Sn(II) from environmental and biological samples was highlighted. The resulting resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and scanning electron microscopy. The resin retained Sn(II) ions at an optimum pH of 9.5 with a sorption capacity of 40 mg g−1. The modified sorbent could be reused for 10 cycles without significant changes in sorption capacity. The recovery of Sn(II) was 98% when eluted with 0.1 mol L−1 ethylenediaminetetraacetic acid. Scatchard analysis revealed that binding sites in the modified resin were homogeneous. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Temkin, and Redlich–Peterson isotherm models. The method was applied with satisfactory results for determination of Sn(II) ions in human plasma and sea water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.