Abstract

AbstractA new fibrous adsorbent was prepared by grafting acrylic acid/acryl amide (AA/AAm) comonomers onto poly (ethylene terephthalate) (PET) fibers. The resulting sorbent has been characterized by Fourier transform infrared (FT‐IR), elemental analysis, thermogravimetric analysis (TGA), FT‐Raman, and scanning electron microscopy (SEM) and studied for the preconcentration and determination of trace Pb (II) ion from human biological fluid and environmental water samples. The optimum pH value for sorption of the metal ion was 8. The sorption capacity of functionalized resin is 44.1 mg g−1. The chelating sorbent can be reused for 20 cycles of sorption–desorption without any significant change in sorption capacity. A recovery of 100.2% was obtained for the metal ion with 0.5M nitric acid as eluting agent. Effect of grafting yield, shaking time, shape of sorbent, and pH of the medium on adsorption of the metal ion were investigated. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Pb (II) on modified fiber were analyzed by Langmuir, Freundlich, Temkin, and Redlich‐Peterson models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined as 0.236, 10.544, and 9.497 at pH 8 and 20°C, respectively. The method was applied for lead ions determination from human plasma and sea water sample. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call