Abstract

Translocator protein (TSPO) concentrations are elevated in glioma, suggesting a role for TSPO positron emission tomography (PET) imaging in this setting. In preclinical PET studies, we evaluated a novel, high-affinity TSPO PET ligand, [(18)F]VUIIS1008, in healthy mice and glioma-bearing rats. Dynamic PET data were acquired simultaneously with [(18)F]VUIIS1008 injection, with binding reversibility and specificity evaluated in vivo by non-radioactive ligand displacement or blocking. Compartmental analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. [(18)F]VUIIS1008 exhibited rapid uptake in TSPO-rich organs. PET ligand uptake was displaceable with non-radioactive VUIIS1008 or PBR06 in mice. Tumor accumulation of [(18)F]VUIIS1008 was blocked by pretreatment with VUIIS1008 in rats. [(18)F]VUIIS1008 exhibited improved tumor-to-background ratio and higher binding potential in tumors compared to a structurally similar pyrazolopyrimidine TSPO ligand, [(18)F]DPA-714. The PET ligand [(18)F]VUIIS1008 exhibits promising characteristics as a tracer for imaging glioma. Further translational studies appear warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call