Abstract

IntroductionThe majority of breast tumors at primary diagnosis are estrogen receptor positive (ER+). Estrogen (E) mediates its effects by binding to the ER. Therapies targeting the estrogenic stimulation of tumor growth reduce mortality from ER+ breast cancer. However, resistance remains a major clinical problem.MethodsTo identify molecular mechanisms associated with resistance to E-deprivation, we assessed the temporal changes in global gene expression during adaptation to long-term culture of MCF7 human breast cancer cells in the absence of estradiol (E2), long term estrogen deprived (LTED), that leads to recovery of proliferative status and models resistance to an aromatase inhibitor (AI). The expression levels of proteins were determined by western blotting. Proliferation assays were carried out using the dual platelet derived growth factor receptor (PDGFR)/Abelson tyrosine kinase (Abl) inhibitor nilotinib. Luciferase reporter assays were used to determine effects on ER-mediated transactivation. Changes in recruitment of cofactors to the gene regulated by estrogen in breast cancer 1 (GREB1) promoter were determined by chromatin immunoprecipitation (ChIP). Gene expression data were derived from 81 postmenopausal women with ER+ BC pre-treatment and at two-weeks post-treatment with single agent anastrozole in a neoadjuvant trial.ResultsThe PDGF/Abl canonical pathway was significantly elevated as early as one week post E-deprivation (P = 1.94 E-04) and this became the top adaptive pathway at the point of proliferative recovery (P = 1.15 E-07). Both PDGFRβ and Abl protein levels were elevated in the LTED cells compared to wild type (wt)-MCF7 cells. The PDGF/Abl tyrosine kinase inhibitor nilotinib, suppressed proliferation in LTED cells in the presence or absence of E. Nilotinib also suppressed ER-mediated transcription by destabilizing the ER and reducing recruitment of amplified in breast cancer-1 (AIB1) and the CREB binding protein (CBP) to the promoter of the E-responsive gene GREB1. High PDGFRβ in primary ER+ breast cancer of 81 patients prior to neoadjuvant treatment with an AI was associated with poorer antiproliferative response. Additionally PDGFRβ expression increased after two weeks of AI therapy (1.25 fold, P = 0.003).ConclusionsThese preclinical and clinical data indicate that the PDGF/Abl signaling pathway merits clinical evaluation as a therapeutic target with endocrine therapy in ER+ breast cancer.

Highlights

  • The majority of breast tumors at primary diagnosis are estrogen receptor positive (ER+)

  • To identify molecular mechanisms associated with resistance to E-deprivation, we assessed the temporal changes in global gene expression during adaptation to long-term culture of MCF7 human breast cancer cells in the absence of estradiol (E2), long term estrogen deprived (LTED), that leads to recovery of proliferative status and models resistance to an aromatase inhibitor (AI)

  • High PDGFRb in primary ER+ breast cancer of 81 patients prior to neoadjuvant treatment with an AI was associated with poorer antiproliferative response

Read more

Summary

Introduction

The majority of breast tumors at primary diagnosis are estrogen receptor positive (ER+). Preclinical and clinical studies provide support for mechanisms that involve cross-talk between ER and growth factor signaling pathways such as ERBB2/HER2 [5,6,7] but this is only overexpressed in about 10% of ER+ patients and is infrequently overexpressed with acquisition of resistance [8] indicating that alternative underlying molecular events remain to be discovered. We used global gene expression analysis to assess the time-dependent changes in gene expression during the acquisition of resistance to estrogen deprivation using the ER+ breast cancer cell line MCF7. These data revealed the platelet derived growth factor (PDGF)/Ableson (Abl) canonical pathway as significantly upregulated as early as oneweek post-estrogen deprivation and revealed this to be the top adaptive pathway at the point of full resistance. These laboratory and clinical studies indicate that the PDGF/Abl signaling pathway is worthy of clinical targeting to reverse or restrict resistance to AIs

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.