Abstract

Ephemerides of planetary satellites are needed to address many problems. These ephemerides are used for subsequent observations. A comparison of the available ephemerides with new observations allows the accuracy of the former to be assessed. However, the precision of the ephemerides must be known a priori when solving the tasks. In this paper we formulate and solve the problem of estimating the precision of the ephemerides of outer planetary satellites derived from observations when applied up to the future moments. The methods of assessing the precision of ephemerides involve producing a set of samples of the same ephemeris inferred from observations with different samples of Monte Carlo generated random errors (RO) superimposed onto it. The statistical parameters of simulated observational errors are based on the results of the reduction of real satellite observations. We compute the deviations of the samples of the ephemeris from the standard ephemeris inferred from real observations and adopt the root-mean-square deviation of the apparent coordinates as the precision of the ephemeris. We also use alternative methods: one based on the matrix of covariances of parameter errors (RP), and another one based on bootstrap samples of observations (BS). We use three methods (RO, RP, and BS) to estimate the precision of the ephemerides of all the 107 outer planetary satellites over the 2010–2020 time interval. The precision of the ephemerides of different satellites varies from 0.05 to 4.0 arcsec. For a number of satellites new observations are of vital importance for maintaining the precision of the ephemerides at a level that would allow identification of satellites during the reduction of observations. For some satellites the precision of their ephemerides is of the order of the sizes of their orbits and such satellites can be considered to have been lost. We show that the method of bootstrap samples (BS) can give doubtful results in the cases where there are few observations, which covered a time interval that is shorter than the orbital period of the satellite. Our results suggest obtaining more precise ephemeris making new observations at the times of maximum estimated errors of the ephemeris. All the inferred estimates of the precision of ephemerides are available from the MULTI-SAT ephemeris server: www.imcce.fr/sat (IMCCE), www.sai.msu.ru/neb/nss/index.htm (SAI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.