Abstract

In this paper a new body-fixed coordinate system, based on the results of the processing of saturnian satellite Hyperion surface data, obtained by the Cassini spacecraft and proving the chaotic nature of this satellite rotation, was constructed. In this coordinate system, an approximating triaxial ellipsoid is defined, as well as global orthomosaic obtained from images of the Cassini spacecraft. A 3D model of Hyperion, obtained on the basis of a new shape model, is presented. This model is compared with 3D model and shape model developed by P. Thomas, J. Joseph, and T. Ansty, tied to the coordinate system in which the coordinates of Hyperion features are presented in the Gazetteer of Planetary Nomenclature. A surface map and a hypsometric map of Hyperion were compiled in an equal-area cylindrical projection of the triaxial ellipsoid with calculated parameters. To plot contour lines on the map, geodetic heights were calculated relative to the triaxial ellipsoid. A comparison was made of the compiled map with an earlier map in cylindrical and azimuthal meridian section projections. It is shown that meridian section projections give a good idea of the body surface, and the use of an equal-area projection makes it possible to calculate the areas of any contours on the surface. The distortion of one of the craters outline shape in the equal-area projection and the distortion of its area in the meridian section projections are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call