Abstract
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters, mismatched and matched disturbances. Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only, the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters. Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way. With skillful integration of the backstepping technique and the adaptive control, a synthesized controller framework is successfully developed for electro-hydraulic axis systems, in which the coupled interaction between parameter estimation and disturbance estimation is avoided. Accordingly, this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances. Also, a nonlinear filter is designed to eliminate the “explosion of complexity” issue existing in the classical back-stepping technique. The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured. Finally, contrastive experiment results validate the superiority of the developed method as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.