Abstract

Using calcium formate, alpha-Ca(DCOO)2, as a test sample, we explore how precisely deuteron quadrupole coupling (QC) and chemical shift (CS) tensors Q and sigma can currently be measured. The error limits, +/-0.09 kHz for the components of Q and +/-0.06 ppm for those of sigma, are at least three times lower than in any comparable previous experiment. The concept of a new receiver is described. A signal/noise ratio of 100 is realized in single-shot FT spectra. The measurement strategies and a detailed error analysis are presented. The precision of the measurement of Q is limited by the uncertainty of the rotation angles of the sample and that of sigma by the uncertainty of the phase correction parameters needed in FT spectroscopy. With a 4-sigma confidence, it is demonstrated for the first time that the unique QC tensor direction of a deuteron attached to a carbon deviates from the bond direction; the deviation found is (1.2+/-0.3 degrees ). Evidence is provided for intermolecular QC contributions. In terms of Q, their size is roughly 4 kHz. The deuteron QC tensors in alpha-Ca(DCOO)2 (two independent deuteron sites) are remarkable in three respects. For deuterons attached to sp2 carbons, first, the asymmetry factors eta and, second, the quadrupole coupling constants C(Q), are unusually small, eta1=0.018, eta2=0.011, and C(Q1)=(151.27+/-0.06) kHz, C(Q2)=(154.09+/-0.06) kHz. Third, the principal direction associated with the largest negative QC tensor component lies in and not, as usual, perpendicular to the molecular plane. A rationalization is provided for these observations. The CS tensors obtained are in quantitative agreement with the results of an earlier, less precise, line-narrowing multiple-pulse study of alpha-Ca(HCOO)2. The assignment proposed in that work is confirmed. Finally we argue that a further 10-fold increase of the measurement precision of deuteron QC tensors, and a 2-fold increase of that of CS tensors, should be possible. We indicate the measures that need to be taken.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.