Abstract

We report experimental characterization of (17)O quadrupole coupling (QC) and chemical shift (CS) tensors for the phenolic oxygen in three l-tyrosine (l-Tyr) compounds: l-Tyr, l-Tyr.HCl, and Na(2)(l-Tyr). This is the first time that these fundamental (17)O NMR tensors are completely determined for phenolic oxygens in different ionization states. We find that, while the (17)O QC tensor changes very little upon phenol ionization, the (17)O CS tensor displays a remarkable sensitivity. In particular, the isotropic (17)O chemical shift increases by approximately 60 ppm upon phenol ionization, which is 6 times larger than the corresponding change in the isotropic (13)C chemical shift for the C(zeta) nucleus of the same phenol group. By examining the CS tensor orientation in the molecular frame of reference, we discover a "cross-over" effect between delta(11) and delta(22) components for both (17)O and (13)C CS tensors. We demonstrate that the knowledge of such "cross-over" effects is crucial for understanding the relationship between the observed CS tensor components and chemical bonding. Our results suggest that solid-state (17)O NMR can potentially be used to probe the ionization state of tyrosine side chains in proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.