Abstract
Aluminum alloy complex components with limbs, such as antitorque arms, are difficult to manufacture because of their complicated shapes and high requirements in terms of mechanical properties. To form 7075 aluminum alloy antitorque arms precisely, two forming schemes with different billet shapes were used to simulate the precision forming process and study the metal flow laws using DEFORM™-3D software. The simulated results show that the second forming scheme (with a two preformed limb billet) significantly improved the metal filling formability and flowing uniformity compared with the simpler solid billet case. Moreover, this scheme also significantly increased material utilization, and the required forming load was only 30% of the first scheme. The experimental results also showed that this scheme can obtain the necessary component with dimensional accuracy and quality in good agreement with all the technical requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.