Abstract

Forest fires present a significant challenge to ecosystems, particularly due to factors like tree cover that complicate fire detection tasks. While fire detection technologies, like YOLO, are widely used in forest protection, capturing diverse and complex flame features remains challenging. Therefore, we propose an enhanced YOLOv8 multiscale forest fire detection method. This involves adjusting the network structure and integrating Deformable Convolution and SCConv modules to better adapt to forest fire complexities. Additionally, we introduce the Coordinate Attention mechanism in the Detection module to more effectively capture feature information and enhance model accuracy. We adopt the WIoU v3 loss function and implement a dynamically non-monotonic mechanism to optimize gradient allocation strategies. Our experimental results demonstrate that our model achieves a mAP of 90.02%, approximately 5.9% higher than the baseline YOLOv8 network. This method significantly improves forest fire detection accuracy, reduces False Positive rates, and demonstrates excellent applicability in real forest fire scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.