Abstract

BackgroundSingle-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. Standardization and validation of such assays are therefore important to interpretation of the clinical trial data. Here we assess the levels of intra-assay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC), as well as tetramer assays.ResultsPrecision was measured in cryopreserved PBMC with a low, medium, or high response level to a CMV pp65 peptide or peptide mixture. Intra-assay precision was assessed using 6 replicates per assay; inter-assay precision was assessed by performing 8 assays on different days; and inter-operator precision was assessed using 3 different operators working on the same day. Percent CV values ranged from 4% to 133% depending upon the assay and response level. Linearity was measured by diluting PBMC from a high responder into PBMC from a non-responder, and yielded R2 values from 0.85 to 0.99 depending upon the assay and antigen.ConclusionThese data provide target values for precision and linearity of single-cell assays for those wishing to validate these assays in their own laboratories. They also allow for comparison of the precision and linearity of ELISPOT, CFC, and tetramer across a range of response levels. There was a trend toward tetramer assays showing the highest precision, followed closely by CFC, and then ELISPOT; while all three assays had similar linearity. These findings are contingent upon the use of optimized protocols for each assay.

Highlights

  • Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials

  • Validation of immunological assays can take a number of forms, and is required for compliance with Good Laboratory Practice (GLP), or for submission of data to licensing agencies

  • Triplicate samples from the high responder were serially diluted into non-responsive PBMC in order to determine linearity

Read more

Summary

Introduction

Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. We assess the levels of intraassay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC), as well as tetramer assays. We compare results from optimized protocols for tetramer staining, CFC, and ELISPOT, performed on shared cryopreserved PBMC specimens, with expert laboratories performing the individual assays. From this data, we derive target values for those who wish to determine precision and linearity of these assays in their own laboratory, and we facilitate comparison of the three assays with regard to their relative precision and linearity. Precision and linearity have not been compared across assays, and expected levels of precision and linearity of these assays have not been determined in a side-byside fashion

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call