Abstract

ObjectiveTriple-Negative Breast Cancer (TNBC) is known for its aggressiveness and treatment challenges due to the absence of ER, PR, and HER2 receptors. Our work emphasizes the prognostic value of LCP1 (Lymphocyte cytosolic protein 1), which plays a crucial role in cell processes and immune cell activity, to predict outcomes and guide treatments in TNBC.MethodsWe explored LCP1 as a potential biomarker in TNBC and investigated the mRNA and protein expression levels of LCP1. We investigated different databases, including GTEX, TCGA, GEO, cBioPortal and Kaplan-Meier Plotter. Immunohistochemistry on TNBC and benign tumor samples was performed to examine LCP1's relationship with patient clinical characteristics and macrophage markers. We also assessed survival rates, immune cell infiltration, and drug sensitivity related to LCP1 using various bioinformatics tools.ResultsThe results indicated that LCP1 expression was higher in TNBC tissues compared to adjacent normal tissues. However, high expression of LCP1 was significantly associated with favorable survival outcomes in patients with TNBC. Enrichment analysis revealed that genes co-expressed with LCP1 were significantly enriched in various immune processes. LCP1 showed a positive correlation with the infiltration of resting dendritic cells, M1 macrophages, and memory CD4 T cells, and a negative correlation with M2 macrophages. Further analysis suggested a link between high levels of LCP1 and increased survival outcomes in cancer patients receiving immunotherapy.ConclusionLCP1 may serve as a potential diagnostic and prognostic biomarker for TNBC, which was closely associated with immune cell infiltration, particularly M1 and M2 macrophages. Our findings may provide valuable insights into immunotherapeutic strategies for TNBC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.