Abstract

In recent years, the search for new electrode materials for rechargeable Li-ion batteries has undergone a drastic shift toward nanomaterials. A similar tendency is expected to occur for the conceptually similar Na-ion batteries. Due to very short internal diffusion paths, nanoscale materials are far less limited by their ionic or electronic conductivities than their bulk counterparts. Nanomaterials can also withstand much greater mechanical deformation during charge/discharge cycling. Overall, these favorable effects significantly enlarge the variety of inorganic compounds that can be used as Li and Na ion storage media. Herein, we discuss the perspectives of a specific family of nanomaterials—monodisperse colloidal nanocrystals and nanoparticles—for controlling and studying the effects of size, composition, and morphology on electrochemical properties. Despite clear scientific advantages, commercialization of such nanomaterials is presently hampered by their high cost of synthesis, owing to the use of or...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.