Abstract

We discuss the similarities and dissimilarities of sodium- and lithium-ion batteries in terms of negative and positive electrodes. Compared to the comprehensive body of work on lithium-ion batteries, research on sodium-ion batteries is still at the germination stage. Since both sodium and lithium are alkali metals, they share similar chemical properties including ionicity, electronegativity and electrochemical reactivity. They accordingly have comparable synthetic protocols and electrochemical performances, which indicates that sodium-ion batteries can be successfully developed based on previously applied approaches or methods in the lithium counterpart. The electrode materials in Li-ion batteries provide the best library for research on Na-ion batteries because many Na-ion insertion hosts have their roots in Li-ion insertion hosts. However, the larger size and different bonding characteristics of sodium ions influence the thermodynamic and/or kinetic properties of sodium-ion batteries, which leads to unexpected behaviour in electrochemical performance and reaction mechanism, compared to lithium-ion batteries. This perspective provides a comparative overview of the major developments in the area of positive and negative electrode materials in both Li-ion and Na-ion batteries in the past decade. Highlighted are concepts in solid state chemistry and electrochemistry that have provided new opportunities for tailored design that can be extended to many different electrode materials for sodium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.